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Abstract. Some properties of unitary representations of the de Sitter group SOo(l,4) are 
considered. In the case of spin zero and positivity ofthe mass operator, these representations 
involve a decomposition which ensures the fulfilment of the cluster separability condition 
and allows for the conventional interpretation of the de Sitter analogues of momentum 
and boost operators. The decomposition of the tensor product of representations belonging 
to the principal series contains the representations of the principal series with all masses.. 
Under natural assumptions concerning the interaction operators, there are no bound states 
in the theory, which is due to the universal de Sitter antigravity. 

1. Introduction 

The theories in which the kinematic invariance group is not the PoincarC group but 
one of the de Sitter groups SO(1,4) or S0(2 ,3)  have been considered by many 
physicists. From the group-theoretical and aesthetic points of view, the de Sitter 
invariance looks much more attractive than the Poincare invariance. However, recently 
the de Sitter invariance has been studied less intensively, since in the currently popular 
superstring theories the flatness of the spacetime is supposed from the beginning. 

The superstring theory has caused many physicists to contemplate that the existence 
of the covariant Lagrangian is unnecessary and that the correct physical properties 
should be imposed only on the representation of the invariance group or algebra in 
the corresponding Hilbert space. Previously, such a point of view was the basis for 
the construction of relativistic theories of systems with a fixed number of degrees of 
freedom and of more general non-local theories in the works by Sokolov (1977, 1978), 
Coester and Polyzou (1982), Mutze (1984) and others. Though these works used 
different techniques, the so-called Sokolov method of packing operators (Sokolov 1977, 
1978) was the basis for them. 

In our preceding paper (Lev 1984) we have proposed a Poincare-invariant formula- 
tion of the packing operators method such that it is not essential whether the interaction 
is local or non-local and that the number of particles may vary. The analogous problem 
can be discussed in the case when the invariance group is not the Poincare group but 
some other group (or supergroup) G. Briefly, the problem is as follows. One has to 
construct a unitary representation of the group G, g + U ( g ) ,  satisfying the following 
condition: if { a , ,  . . . , a,,} is any set of subsystems comprising the considered system, 
then upon elimination of interactions between these subsystems the above representa- 
tion is transformed into the tensor product of representations g + U o , ( g )  describing 
the corresponding subsystems. Such a property of the representation is called the 
cluster separability property, first considered by Haag and Kastler (1964). 
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600 F M Lev 

The main purpose of the present paper is the extension of the author's results (Lev 
1984) to the case when the invariance group is the de Sitter group SOo( 1,4).  It will 
be clear from the following discussion what reasons have prompted the author to try 
first the case G = SOo( 1,4)  and not G = SOo(2, 3). The motivation for combining the 
de Sitter invariance with non-locality had been proposed to the author by Mirmovich 
(Lev and Mirmovich 1984). 

As we shall see below, proceeding from the algebraic consideration which uses 
only the commutation relations for the representation generators of the group G =  
SOo( 1,4) Lie algebra, one can note that the SOo( 1,4)-invariant theory has essentially 
different properties from the Poincari-invariant theory. 

Let us describe now the main notions and notations used in the present work. We 
denote by ( .  . . , . . .) and 1 1 . .  . I 1  the scalar product and the norm in the considered 
Hilbert space. If 0 is an operator in H, then 9(0) and 6 denote its domain and 
closure respectively. Only the continuous unitary representations of the group G and 
its subgroups are considered. If not stated otherwise, summation over the repeated 
indices is assumed. In our notation the indices a, b, c, d, e, f =  0, 1, . . . , 4 ,  the indices 
i, j = 1, .  . . ,4 ,  the indices k, 1, m = 1, .  . . , 3 ,  and the indices p, (+ = 1,2. 

Having a representation g + U ( g ) ,  one can construct the representation of the Lie 
algebra in the space of infinitely differentiable vectors H,.  Let the matrices Lab be as 
follows: 

( L a b ) ;  = 6 : 7 7 b c - 6 1 ; 7 7 4 C  (1.1) 

where the indices c and d enumerate the lines and columns, and r] is the diagonal 
metric tensor with the components -r]" = . . . = -r]44 = 1. The representation 
generators M a b  are defined by the formula 

1 
1-0 t i M abx = lim - { U [  exp( ?Lab)]  - l}x 

if x E H,.  These operators are essentially self-adjoint in H ,  and satisfy the commuta- 
tion relations 

(1.3) [ M o b ,  M c d ]  = -i( r ]aCMbd + 77bdM4c - r ] a d M b c - r ] b c M a d ) .  

As usual, V a b  means the covariant tensor with the same components as vab,  and 

Let d be the algebra of polynomials of Mab.  The involution * on d is defined as 
both tensors are used to lower and raise the indices. 

an antilinear operator with the property 

( M a b M c d . .  .Mer)*  = M". . . M C d M a b .  

Theorem 1 . 1 .  If x , y ~  H,, E ( M ) € d  then (x, E ( M ) y ) = ( E ( M ) * x , y ) .  

The theorem easily follows from the hermiticity of M a b  in H ,  (see, e.g., proposition 2 
from ch 11, 0 1, of the book by Barut and Raczka (1977)). 

Let K 2  = M,M,, be the Casimir operator of second order for the group S0,,(4). 
Since S0,(4) is the maximum compact group in G and G is semisimple, we have the 
following theorem. 

Theorem 1.2. If E ( M ) € s P ,  E ( M ) * = E ( M )  and [ E ( M ) , K , ] = O ,  then E ( M )  is an 
essentially self-adjoint operator. 
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This theorem is a particular case of corollary 2 of theorem 3 from ch 11, § 2 of Barut 
and Raczka (1977). The last condition of theorem 1.2 is needed to ensure the self- 
adjointness of E ( M )  in H ,  (the hermiticity being ensured by theorem 1.1). 

2. Generators of single-particle representations of the group SO& 4) 

In this section, some properties of unitary irreducible representations ( U I R )  of the 
group SOo( 1,4) are briefly discussed. The complete classification of such representa- 
tions was given by Dixmier (1961) and their various properties have been studied in 
many works (see, e.g., Strom (1970), Mensky (1976), Moylan (1983, 1985) and the 
references quoted therein). 

Let A be the Abelian subgroup generated by LO4 and T be the Abelian subgroup 
generated by the elements LOk + LJk. We consider the representation of the group 
H = SO0(3)AT defined by the formula 

A @ ~ ( ~ T A ~ T )  = e x ~ ( i ~ ~ ) A s ( r )  (2.1) 

where r + A , (  r )  is the U I R  of the group so0(3) with the spin s, rA = exp( 7L04) and aT 
is arbitrary (the reduction of Aps on T is the identity representation). Let g +  U ( g )  
be the representation of the group G induced from the representation (2.1). The explicit 
form of operators M a b  depends on the choice of representatives for the elements of 
coset space G/H. The two choices are widely used. In the first of them the elements 
uL and uLZ are chosen as representatives, where U,. are the Lorentz group elements 
and Z is the matrix formally coincident with the matrix 7. In this case the representation 
under consideration is realised in the space of vector functions {cpl(u) ,  cp2(u)} where 
U is the element of the Lorentz velocity hyperboloid corresponding to uL while the 
functions cpl(u) and cp2(u) have the range in the space of the U I R  r +  A y (  r). The explicit 
calculation shows that the action of generators on the function cpl (u)  is as follows: 

a s x u  
av ~ , + i  

M = I (  U)+ s N = -iffo-+- 

F = p u + i [ & + u (  u:) +: u ]  +- s x u  
uo+ 1 

Mo,=puv,+iuo U-+- ( ,”, 3 
where M = { M 2 3 ,  M 3 ’ ,  M ” } ,  N = {MO1,  MO2, MO’}, F = {MI4, M2, ,  M34}, s is the spin 
operator, l ( u ) =  - iuxa/au is the operator of orbital angular momentum and u o =  
(1 + u2) 

If p > 0 and the functions {cp, (u) ,  cpz(u)}  satisfy the condition 

1 ~ I I c p l ( ~ ) l 1 2 + I I c p 2 ( ~ ) / 1 2 ~ d ~ < ~  (2.3) 

where du is the Lorentz invariant volume element on the hyperboloid, then we have 
a principal series of U I R  describing the elementary particles. In the case G = SOO(2, 3), 
however, the elementary particles are described by the U I R  of discrete series (see, e.g., 
Evans (1967) and Fronsdal (1965)). 
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The above choice of representatives is utilised to obtain the possible closest analogy 
between the representations of SOo( 1,4)  and the Poincart group. In particular, the 
operators M and N have the same form for both groups, while the contraction of 
SO,( 1,4) into the Poincart group is accomplished as follows. Let us introduce the 
parameter R and define m = p /  R, P = F /  R, E = MO4/ R. Then, it follows from (2.2) 
that at R +CO, P = mu, E = mu,, i.e. P and E are the conventional momentum and 
energy operators, respectively, and m is the conventional mass. 

Since G = SO0(4)AT, then one can choose as the representative xG of the class x,H 
the element xG which is the representative of the class xGSOo(3) in so0(4) .  Rigorously 
speaking, we must deal not with SOo( 1,4)  but with its singly-connected covering group 
SOo( 1,4).  The explicit description of SO,( 1,4) can be found elsewhere (see, e.g., Strom 
(1970)). The maximum compact subgroup of SOo(l,4) is isomorphic to K =  
SU(2)xSU(2) ,  where x denotes a direct product. The elements of the group K are 
denoted as (U, v )  (U, U E SU(2)). Let be the subgroup of K consisting of the elements 
(U, U )  and L be the subgroup consisting of the elements (U, 1). At the covering 
homomorphism of the group K onto so0(4)  the subgroup is transformed into 
so0(3). Therefore, the role of xG can be played by the elements of the group L, and 
K = L 8 K,, where 8 means a semidirect product. 

Let the elements of the group SU(2) be represented by the points of a three- 
dimensional sphere S 3  in four-dimensional space by means of the relation u ( n )  = 
n 4 +  icrn, where {a} are the Pauli matrices and n4 = *( 1 - n2)1'2 for the upper and lower 
hemispheres respectively. Then, the U I R  under consideration is realised in the space 
of vector functions on S 3  with the range in the space of U I R  of the group SU(2) with 
the spin s. The direct calculation gives 

(2.4) 

a 
an 

MO4 = in4n - + ( p  + 3i) n4 - sn 

where L are the representation generators of the group L. They are related to the 
operator F via the relationship L = ;( F + M ) .  

The principal series corresponds to the case when p > 0 and 

(2.5) 

where dn is the S0(4)-invariant volume element on S 3  
The above choice of representatives will be used in the main part of the work, 

while the first choice will be used only in § 6. A detailed description of various choices 
is given in the book by Klimyk and Kachurik (1986). 

Let nK = (u(n) ,  1) and kn be the 4-vector obtained from the 4-vector n E S 3  by 
SO(4) rotation corresponding to kE K. Then (kin) = kn,(kn)l(' is the element of the 
group and the generators L and M in (2.4) correspond to the following representa- 
tion of the group K 

U(k)cp(n) = A,[(k-'l n)-']cp(k-'n). (2.6) 



Group-theoretical aspects of SO,(l, 4)-invariant theory 603 

This is the representation of the group K induced from the representation k o + A s ( k o )  
of the group &. If I E  L, then, as follows from (2 .6) ,  U( l ) cp (n)  = c p ( f - ’ n ) .  Hence the 
representation operators of the group L do not act over the spin variables and produce 
only the left shift of the variable n. Therefore, S 3  can be considered as the de Sitter 
analogue of the coordinate space and L as the de Sitter analogue of momentum. The 
analogy with momentum follows also from the fact that the contraction of SOo( 1,4) 
into the Poincare group transforms K =  L P &  into E(3)=T38)I(0, where T3 is the 
group of translations of three-dimensional Euclidean space. However, the components 
of ‘momentum’ L do not commute with each other and satisfy the commutation relations 
for the representation generators of the group SU(2). 

The sphere S3 is considered in the literature (see, e.g., Mensky (1976), Fabec (1977) 
and Moylan (1983, 1985)) as a velocity space, since the class uLH coincides with the 
class nKH with n = - u / v o ,  n4 = l /u , ] ,  the generators of group T being in this case the 
de Sitter analogues of the momentum operator. Our further considerations are not 
formally dependent on whether we deal with the sphere S 3  as a velocity or coordinate 
space. However, by its meaning it corresponds to the latter case. 

3. Representation operators of the group K in the multiparticle case 

In the author’s previous work (Lev 1984) it is shown that in the PoincarC-invariant 
theory one can easily ensure the cluster separability property in the so-called instant 
form when the representation generators of the group E(3) are free of interaction. 
Therefore, if we extend the results of this work to the case G = SOo( 1,4), it is natural 
to consider a version of the theory such that the representation generators of the group 
K are free of interaction. In this case the representation of the group K describing 
the system with a fixed number of elementary particles is the tensor product of the 
corresponding single-particle representations. Hence we can define the representation 
of the group K for any quantum system, since its representation space is a direct sum 
of spaces with a given number of particles. 

We consider only the systems of particles corresponding to the principal series of 
UIR.  Hence, we assume that N elementary particles are available which are indexed 
by 1,2, .  . . , N. Their states are described by the wavefunctions cp(n,, . . . , n k )  with 
the range in the tensor product A y l @ . .  . @ A h , , ,  being such that 

- 

We introduce the variable describing the motion of the system as a whole and the 
relative motion of particles. We choose the following as a unit 4-vector describing the 
system as a whole: 

where the modulus of the 4-vector has its usual sense. We choose as a variable 
describing the ‘internal’ motion of the particles the unit 4-vector n’, such that ( nt)K = 
n K ( Z , ) K .  Then from the definition of elements nK and from (3.2) one can show that 

(3.3) n’]+ . . . - t i ,  = o  Z:+. . .+ n’; = I n, +. . .+  n N  I s o .  
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Furthermore, a calculation similar to that in relativistic kinematics gives 

dn,  . . . dnN = dn ds( int)  

ds ( in t )=2(6 ;+ .  . . + n ' ~ ) 6 " ' ( n ' , + .  . .+i , )@($+..  .+n'L) dn', . .  . dn',. 

(3.4) 

(3.5) 

Using the formulae of this section and the formula (2.6), one can show that the 

U ( k ) $ ( n ,  int)=A((k-'In)-')$(k-'n,int) (3.6) 

where the function 4 depends on the vector n and the 'internal' variables to which 
we assign the vectors G I , .  . . , iW and the spin variables of all particles. In addition, 
the function $( n, int) satisfies the condition 

considered N-particle representation of the group K can be given by 

1 1  $( n, int) 1 1 2  dn dS(int) < 00 (3.7) 

and the representation ko+ A(k,,) of the group I& entering the formula (3.6) is defined 
as a representation acting in the space of functions from the 'internal' variables as 
follows: 

(3.8) 

The function ~ ( n ' ' , .  . . , G N )  entering this formula has the range in A y , @ .  . . @ A , ,  and 
satisfies the condition 

/ I  ~ ( n ' , ,  . . . , iN) [ I 2  ds(int)  <CO. I (3.9) 

From formula (3.8) it readily follows that the generators of the representation 

(3.10) 

The comparison of formulae (2.6) and (3.6) shows now that the generators of the 
N-particle representation of the group K have the form of single-particle representation 
generators (2.4) if n,, s, are replaced with n and S, respectively. Note, however, that 
this is not the case for the generators of non-compact transformations even if the 
interaction between particles is absent. 

Our choice of the de Sitter analogue of the momentum operator implies that L2 is 
the analogue of P2.  Its eigenvalues, however, are now discrete and equal to J ( J +  l ) ,  
J = 0,  f, l,:,. . . , and the projector onto the corresponding states is 

k,  + A( k,) have a standard form of the total internal angular momentum operator 

s = l l ( i l )  +. , .+ l N - , ( i N - ' ) + s 1  +. . .+s,. 

1 
2 J +  1 

n'=- tr{9'(l))U(l)  d l  (3.11) 

where 9 ' ( l )  is the matrix of the UIR of the group SU(2) with spin J, and d l  is the 
invariant volume element on the group L - SU(2) coinciding with-the volume element 
of s3. 

In the conventional case, the momentum of the system at the fixed P2 is defined 
by two additional parameters fixing the spatial angle. In our case we can assume that 
at the fixed J the 'momentum' is defined by two parameters a, p = -J,  - J +  1, .  . . , J 
such that the wavefunction in the state IJap) is equal to 
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where the sphere S' is identified with the space of the group SU(2), and ,yJ is some 
function of the 'internal' variables. Thus, at a given J there are (25+1)-  different 
'momenta', and all corresponding spaces H& have the same dimension equal to that 
of the space Ha. 

Y 

4. Cluster separability in a system with spin zero 

In  order to extend the results of the author's work (Lev 1984) to the case G = SOo( 1,4),  
one has to determine the conditions at which, having the representation g + U ( g )  in 
the Hilbert space H, one can construct the unitary operators %Lp from H o  to Hiop. 
Considering this problem, we shall use essentially the technique of SU(2) x SU(2) shift 
operators developed by Hughes (1983). Hence, for the reader's convenience, we change 
the notation in accordance with this paper. Instead of L we now write P. This notation 
occasionally confirms that this operator is chosen as the de Sitter analogue of momen- 
tum. Certainly, one can choose as such an analogue the representation generators of 
the second multiplier in SU(2) x SU(2), and we denote them by Q. Hence 

P = f (M + F )  Q = f (  M - F ) .  (4.1) 

Let us introduce po = P3,  pi = PI f iP2 and, analogously, introduce qo, q*. We intro- 
duce also the SU(2) x SU(2) spinor operator R,, corresponding to the SO(4) vector 
operator MO' 

R 1 1  - - 2-1/2(iMOI - Mo2) R I 2  -2- ' l2(-M04-i~03)  - 
R -2-1/2(Mo4-iM03) R - 2-1/2(-iM01-M02). (4.2) 

21 - 22 - 

We mean that the spinorial indices are raised and lowered with the help of antisymmetric 
spinor where eI2  = 1. Then, from theorem 1.1 it readily follows that for any 
x , y ~ H ,  

(R,,x,y)=(x, RP"Y). (4.3) 

Proceeding from (1.3) and (4.11, one can easily confirm that the commutation relations 
in the variables (p*,  po, q + ,  qo, Rp,) are the same as those for the group SO(5) in 
Hughes' (1983) paper; the difference lies only in the hermiticity property (4.3). There- 
fore, the Casimir operators 

(4.4) 

where V" = eabcdeMbCMde and eobcde is the absolutely antisymmetric tensor with = 
1, have the same form as in Hughes (1983). Since there is an inaccuracy in formula 
(3.4) of Hughes' work, we introduce an accurate expression for I,: 

I -I 12=$MabMab 4 - 64 V"Va 

I 4 =  2R:i P-9- +2R:2~+q+ -2R:,p-q+ - 2R:ip+q- -4RiiRi2p-qo-4RlIRzl poq- 

+ 4R I I R22 Po40 + 4 R d 2 1  Po90 + 4R12Rz2 poq+ + 4R21 R22 p+qo 

+ 2( P2 + 9') ( I 2  + 1 ) - P" - Q4 - 6P2 Q2 + 4p,Q2 + 4P2q0 - 4 p & ,  . (4.5) 

We denote by p ( p  + 1) and q(q  + 1) the eigenvalues of operatiors P2 and Q2, 
respectively. As in Hughes (1983), we denote by P and Q the operators whose 
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eigenvalues are p and q respectively. The eigenvalues of operators po and qo will be 
denoted by CY and P respectively. The projector onto HE; has the standard form 

9aP,,(u)9&(v)U(u, U )  du dv I-IE; = (2p + 1)(2q + 1 )  (4.6) 

(no sum over CY and P ) .  

Proposition 4.1. If X E  H,,  then rIE; X E  H,.  

The proof is accomplished in a standard way proceeding from formulae (1.2) and 
(4.6), the compactness of group K and the continuity of functions 9 E P ( u ) .  

Corollary. HE; n H E  is dense in HE;. 

In the PoincarC-invariant case the unitary operator connecting the space having a zero 
momentum with a space having any other fixed value of momentum exists if the 
Casimir operator of second order (the mass operator squared) has the positive lower 
bound (see, e.g., Lev 1984). At the same time, the representations describing tachyons 
and the particles with zero mass do not possess the ‘rest’ states. We shall see soon 
(proposition 4.2) that if the operator W = -21, is chosen as the de Sitter analogue of 
the mass operator squared, then, taking into account our choice for the de Sitter 
analogue of the momentum operator, one has an analogous situation. 

Since 9( W )  = H,,  then it follows from proposition 4.1 that W r I g  ZJ IIE; W. Hence, 
WII:; 2 IIE; W. Let WE; and +WE; be the reductions of W and W, respectively, on 
HE;. Then, one would easily see that CUE; ==. According to theorem 1.2, W is 
self-adjoint and thus W E ;  is the self-adjoint operator in HE;. Analogously, one can 
consider the reductions of Z4, P2, Q 2  on HE;. 

We define the SU(2) x SU(2) shift operators by the same formulae as in Hughes’ 
(1983) paper 

0” = RI i(P +Po+ 1 ) ( Q  + qo+ 1 )  + R22P+q+ + R12(P + PO+ l )q+ + R21 P + ( Q  + q o +  1 )  
(4.7) 

G+- = -Riz (  P + P O  + 1 (4.8) 

0-’ = - R 2 i ( P  + p o ) ( Q  + qo+ 1 )  + R12 P-q+ - R 2 2 ( P + ~ o ) q +  + R I I  P-( 0 + q o +  1 )  (4.9) 

0-- = - R22( p + Po) (  0 + 40) - RI 1 P-9- + R2I(P + Po)+ + Rl2P-( Q + 90). (4.10) 

These operators are defined on H,; contrary to the work by Hughes (1983), we shall 
not use A”2s1’2, etc, operators since they can contain uncertainties and an improper 
handling of them would cause errors. 

As in the paper by Hughes (1983), it follows from (1.3) and (4.7)-(4.10) that 

0 + 90) + R21 P+q- + R I  I + PO + 1 )q- - R 2 2 ~ + (  Q + 90) 

O+-x E HP+1/2,q-I/2 if x E H:; n H , ,  then 0++x E H p + 1 / 2 3 q + 1 / 2  a + 1 / 2 , P + 1 / 2 n  Hm, u + l l Z , P - I / 2 n  H a ,  o-+x E 
Hp-1’?,y+1’2 a - I / -  p + 1 / 2  fl H x, B--x E HE1:$$,;:1/,?2 n H ,  and on the space HE; n H ,  
0++0-- = -I 

2 (  P -+ CY )( + P ){ 14 + ( P + 4 )  ( P + + 1 )[ W + ( P + + 2)( P + 

w+ ( P  - 9 + l ) ( P  - 9 - 2)11 

- 1 ) I}  (4.1 1 ) 

0+-0-+ = +(P + a ) ( q  + P + 1 ) { 1 4 +  ( P  - 9 ) ( P  - 9 - 
(4.12) 

(4.13) 0-’0’-=$( p + CY + l ) ( q  +P){14+ ( 9  - p ) ( q  - p  - 1)[ W +  ( 4  - p  + l ) ( q  - p  -2)]} 
0--0” = -$( p + CY + l ) (q  + p  + 1 ) { z 4 +  ( p +  q + l ) ( p  + q+2)[ w+ ( p  + q ) ( p +  q+3)]) .  

(4.14) 



Group-theoretical aspects of SOo(l, 4)-invariant theory 607 

Proceeding from theorem 1 . 1  and formulae ( 1 . 3 )  and (4.3), one can show in analogy 
with Hughes (1983) that, if x E HE$ n H,, then 

II o--x 1 1 2  P4 (x, O++o--x) = - 
(P  + t ) ( s  + t ,  

p ( q + l )  l l o - - + x l 1 2  (x, 0+-0-+x) = - 
(P  +4)(4 + t )  

(4.15) 

(4.16) 

(4.17) 

(4.18) 

Let H (  p = 0) be a direct sum of the spaces H o q  with all possible q, and H (  q = 0) 
be defined analogously. Suppose that the lower bound of the operator W is positive, 
and this condition will be written as W >  0. 

Proposition 4.2 Let W > 0. Then we have either H (  p = 0) # 0 or H (  q = 0) # 0. 

Proof: Suppose that the opposite situation takes place, i.e. H (  p = 0) = H (  q = 0) = 0. 
Let Hf;’ be the non-zero space with the minimum p = p  and some q = 4‘. According 
to our assumption, p ,  q’# 0. From the properties of operators 0 and from (4.11) and 
(4.12) it follows that if a # -p ,  p # -q’ then we have on Hf$’n H ,  

z4+ ( p  + q ’ ) ( p  + q‘+ 1)[ w+ ( p  + q’+2)(  p + 9’- l ) ]  = 0 

z4+ ( p  - q ’ ) ( p  - q’- 1)[  w +  ( p  - q’+ l ) ( p  - q’-2)] = 0. 
(4.19) 

Since Z4 and W commute with p- and q- ,  these relations take place at all CY = -p ,  . . . , p 
and p = -q’, . . . , 4’. As in Hughes (1983), elimination of 1, gives 

WE$ = -2[p2+q’(q’+ 1 1 - 1 1  (4.20) 

Hence, if p ,  q’ # 0, then ut$ s 0, which contradicts our assumption. 

The condition W >  0 is a sufficient one for the existence of the ‘rest’ states. Indeed, 
as is obvious from § §  2 and 3, the ‘rest’ state always exists for any system of particles 
corresponding to the principal series of UIR.  In the case of UIR, calculation of W 
proceeding from (2.2) or (2.4) gives the well known result 

(4.21) 

Therefore, W < 0 is possible for the principal series representations. However, if spin 
is zero, the condition W > O  is also a necessary one (see below). 

In the following part of this section we confine ourselves to consideration of systems 
with spin zero, since the case of a non-zero spin is essentially more complicated from 
the technical point of view. 

Let again H ( p  = 0) # 0. By definition of the spin operators, the spin is zero if 
Mx = 0 Vx E H (  p = 0) n H,, since the action of the spin operator on the ‘rest’ states 
is defined as the action of operator M on these states. At the same time, by definition 
of the space H (  p = 0), Px = 0 for such x and, therefore, Qx = 0 (see (4.1)). The case 
H( q = 0) # 0 can be considered in a similar way. Combining this result with proposition 
4.2, we have that if the following condition 4.3 is satisfied then the following proposition 
4.4 occurs. 

w = F2 - s2 +$. 
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Condition 4.3. The representation g +  V ( g )  has the property W > O  and is the rep- 
resentation with spin zero. 

Proposition 4.4. H o  = H( p = 0) = H( q = 0) # 0 and V x  E H o  n H,, M,x  = 0 for all i, j .  

From the continuity of operators U ( g )  one can now easily prove the following 
proposition 4.5. 

Proposition 4.5. Let r#J be a set dense in H o .  Then at the condition 4.3 the linear span 
of the elements U ( g ) x ,  g E SO,,( 1,4),  x E 4 is dense in H .  

I t  is evident from proposition 4.4 that U (  k)x = x if k E K, x E H o .  Therefore, as easily 
follows from proposition 4.5, the linear span of the elements U(exp( r,LoJ))x, x E 4 is 
dense in H .  

Let A2 be the reduction of W on H o .  This notation shows that the operator 
A = (A')''' is chosen as the de Sitter analogue of a mass operator. Let e(A) be the 
spectral function of operator A and the role of 4 be taken by x E H o  satisfying the 
condition e ( A ) x  = x for some finite interval A. Then, using theorem 3 from 0 7 of 
Nelson (1959), one can prove that every X E  r#J belongs also to H ,  and the series 

(4.22) 

is convergent for any 4-vector { t , } .  Let RI ,  /,, be obtained from MoJ1. . . MoJ,i by the 
symmetrisation over all indices (since SO(4) is the orthogonal group, the upper and 
lower indices are equivalent). Then, taking into account the formula (4.22) and 
proposition 4.5, we have the following proposition 4.6. 

Proposition 4.6. Under condition 4.3, the linear span of elements x, tJ l  ,,,Rll /,,x 
( X E  H o n  H , ,  n = 1 , 2 , .  . .) is dense in H .  

The symmetric tensor operator RJI  ,,, is in one-to-one correspondence with the SU(2) x 
SU(2) spinorial operator R,,  p , , , ~ ,  ~ , ,  which is symmetric relative to any permutation 
of pairs ( p l ,  gI). This operator can be decomposed into irreducible components 

RJJi p, , , ( r ,  (r,, =C RP,Y pta.cr,  U,, (4.23) 

where p and q range independently from 0, i, . . . , in. From the above-mentioned 
symmetry property one can see that in fact only the terms with p = q = J are present 
in the sum (4.23). Therefore, from propositions 4.1 and 4.6 and theorem 1.2, there 
follows proposition 4.7. 

PY 

Proposition 4.7. Under condition 4.3 the decomposition 

H =  O H : ;  
p q 4  

contains only the spaces with p = q. 

(4.24) 

Proposition 4.8. Let the decomposition (4.24) contain only the spaces with p = q. Then 
I ,  = 0. 
- 
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Proof. It is sufficient to consider the action of I4 on every subspace H:$ n H,. At 
p = 0, V” = 0 as follows from proposition 4.4. Let now p # 0. Since the operators (4.12) 
and (4.13) should be equal to zero, then T4= 0 if a, p # -p. Since Z4 commutes with 
p- and q - ,  then f4 = 0 everywhere. 

It follows from (4.15)-(4.18) that the operators (4.11)-(4.14) are negative semidefinite. 
Under the conditions of proposition 4.8 we have from (4.14) and (4.18) that 

U!$ + 2p(2p + 3) 3 0 

and, in addition, if p f 0, then it follows from (4.11) and (4.15) that 

U:% + 2( p + 1 )( 2p - 1 ) 3 0 

(4.25) 

(4.26) 

and the other conditions are satisfied automatically. 
We have defined the notion of spin only for the systems having a ‘rest’ state. We 

have shown in this case that proposition 4.7 is valid for systems with spin zero. 
Alternatively, we might define a system with spin zero as one for which proposition 
4.7 holds. Such a definition is less obvious but is applicable also for the systems which 
have no ‘rest’ state. In any case, as follows from proposition 4.8, formulae (4.25) and 
(4.26) are valid. 

< 0 cannot 
have a ‘rest’ state as in the Poincari-invariant theory. As follows from (4.21), the case 
W =  0 corresponds to the U I R  with ip = $. It can be shown that this representation 
(belonging to the discrete series) also has no ‘rest’ state, but we shall not dwell on 
this. We shall consider in more detail the case of UIR. It is known that for s = 0 the 
values cT/. < 0 are obtained in the case of the discrete series with ip = n +$ ( n  = 1 , 2 ,  . . .). 
The condition (4.26) is in this case stronger than (4.25), and we have from (4.21) 

p - t ( n + l ) > o .  (4.27) 

This corresponds to the fact that representations of the discrete series are interpreted 
as tachyons. 

In the remaining part of this section we suppose without reservations that the 
condition 4.3 is satisfied. In this case, the decomposition of H on the subspaces with 
different ‘momenta’ (see 0 3)  is the standard SU(2) x SU(2) decomposition of H and 
H i p  = HE$. 

irreducible SU(2) x SU(2) spinor which is completely symmetric in indices p I ,  . . . , pn 
as well as in indices u l ,  . . . , un. It can be represented as R i p  ( J  = n/2), where a is 
defined simply by the number of unities in the set { p l , .  . . , p n }  and /3 is defined in a 

commutes with all M,, 
and thus, as follows from theorems 1 .1 ,  1.2 and formula (4.3), RJ is self-adjoint and 
RJ 3 0. Let rJ be the reduction of Rj on Ho. Proceeding from theorem 1 . 1 ,  proposition 
4.8 and formulae (4.3), (4.7), (4.14) and (4.18), one can prove the following proposition 
4.9. 

It follows from (4.25) that, if W < 0, then p > 0, i.e. the systems with 

Let us consider the term R p l . ~ . p , , , u l . , . v , ,  n / 2  n / 2  in the decomposition (4.23). This is the 

similar way. The operator Rj = R i , .  . , p , , , u I , ,  ,v,,  R J , P , .  . . P., vI . . . un 

Proposition 4.9. rJ > 0. 

Therefore, one can define riI’*, and this operator is bounded. Let us consider the set 
4J = { r:’*x, x E H o  n Ha}.  Since H o  n H ,  is the kernel of operator r, and 9( rJ) is the 
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kernel of operator ri'2, it follows readily from proposition 4.9 that $J is dense in Ho.  
One can check that the operators 

"U',, = ( 2 J +  1 ) ( C : : " C : ; P ) 1 i 2 R ~ p r J ' i 2  (4.28) 

(by C: we denote binomial coefficients) map isometrically 4J into HLP.  Therefore, 
%',, can be extended to the whole space H o ,  and by means of proposition 4.6 one 
can prove the following proposition 4.10. 

Proposition 4.10. The operators 021& are unitary operators from H o  to H i p .  

The operator % - I  = X J e p @ ( " U ' , P ) - '  is the unitary operator from H to L2(J ,  a, P ) O H 0 .  
The elements x of the latter space are defined by their components xLP E H o  which 
satisfy the condition 

c /I X L P  /I2 
Ja P 

(4.29) 

It can be readily shown that the action of representation generators of the group K in 
the space L,(J,  a, p)O H o  is defined by the standard formulae 

1 / 2  J ( p - x ) ' , p = [ ( J + ~ + 1 ) ( J - - L y ) l  X a + 1 , p  

( q - x ) L p = [ ( J + P + + 1 ) ( J - P ) I ' ~ 2 x ' , , p + l  

1/2 J ( p + x ) i p  = [ ( J + . ) ( J - a + l ) I  X , - , , p  

( 4 + x ) L ,  = [ ( J + P ) ( J  - P  + 1)ll'2x:.P-l 

(pox)',p = axe0  (qox)J,p = P d p  
(4.30) 

J 

and the action of operators Rp,, can be represented in the form 

(4.31) 

The coefficients a ( J ,  a, P, p, a) and b(J,  a, p, p, a) can be calculated in principle, 
but we have no need to know their explicit form. In addition, it can be shown that rJ 
is the polynomial of 2Jth order of At2. Hence the results of our consideration can be 
formulated in the form of the following decomposition theorem. 

Theorem 4.11. Let g +  V(g) be the continuous unitary representation of the group 
SOo(l, 4) in the Hilbert space H and W = -4MabMab.  If W >  0 and the spin is equal 
to zero, then the SU(2) x SU(2) decomposition H = Z J,PO H i p  contains only subspaces 
with p = q = J. The operators "U',o from H o  to H i P  are unitary and given by (4.28) on 
the sets dense in H o .  Representation generators of the subgroup SU(2) x SU(2) in the 
space L,(J, a, P)O H o  = ( Z J e P 0  ( "ULp)-I)H have the standard form (4.30) while the 
action of operators MO' in this space is fully defined by the operator .d2 which is the 
reduction of W on Ho. 

The method of packing operators developed by Sokolov (1977, 1978) (see also the 
papers by Coester and Polyzou (1982), Mutze (1984) and Lev (1984, 1985)) shows 
that in the PoincarC-invariant theory one can divide variables into 'external' and 
'internal' ones, and all interactions are defined by the mass operator in the 'internal' 
space. According to theorem 4.11, this is also the case in SOo(l,4)-invariant theory, 
at least for the systems with spin zero. Hence, we can guarantee that the cluster 
separability (see 0 1 )  holds if the introduction of interaction into the system is accom- 
plished as usual through the introduction of some interaction operators into the 
free-mass operator. 
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5. The mass operator of a system of two particles 

Taking into account the remarks made at the end of the preceding section, it is natural 
to consider first the properties of free-mass operators. In the case of free particles 1 
and 2 the corresponding representation of the SOo(l, 4) is equal to the tensor product 
of the corresponding single-particle representations. Proceeding from the formula (2.4) 
and results of 0 3, one can calculate explicitly the operator A’ which, as well as in 
the spinless case, can be defined as the reduction of W on the subspace H (  p = 0). 
The result of a simple but time-consuming calculation is as follows: 

~ 2 = ~ ~ ~ / ~ 4 ~ ~ ~ ~ ~ + ~ 4 ~ o + ~ P I - P 2 ~ ~ - ~ ~ ~ ~ 1 - ~ 2 ~ 1 2  

+ {(pl  + p2)S4+ i[ a,( S ( a / a S )  +$) - S2/S4] - (6, s1 - s2)}’ +5(9 + 6’) - 2s’  

where So = sl + s?,  S = So+ 1(6),  S = i ,  is chosen as the ‘internal’ variable, and 6, = 
(1 - S2)1’2. The role of the ‘internal’ volume element (3.5) in the considered case is 
taken on by 

(5.2) 
where 6 = IS 1, and do  is an element of the spatial angle. 

Let us proceed to the space of functions quadratically integrable over the measure 
d6 do/6,6, introduce the variables 

(5.1) 

864 d3S = 8646* d6 do 

r = -ln{[l - ( I  - ~ * ) ” ~ ] / 8 }  g=s / s  (5.3) 
and perform the unitary transformation by multiplication of all functions by 

exp i(pl + p 2 )  tanh t dt  . ( 1: ) 
As a result, we have that A’ can be realised as 

(PI - CL2)S- 5 x (SI - s2) A== - ( tanh r cosh r cosh r 

+ - - 2 s 2  

l ( t )+ tanh  r ( s l + s 2 ) +  

9 
dr cosh r 

in the space of spinorial functions q ( r ,  5) such that 1 / I c p ( r , 5 ) l l 2 d r d o < ~ .  

Performing another unitary transformation 

(5.4) 

( 5 . 5 )  

and taking into account 

one obtains after simple calculations 
exp[-i(&)w]s exp[i(&)w] = s cos w + & ( & ) ( l  -cos w ) + ( s  x 5) sin w (5 .7)  

a’ cosh r - 1 (cosh r - 1)2( 1 + 2  cosh r )  
sinh’ r cosh’ r 

- 
dr2 sinh‘r ‘(6j2- sinh2 ( S ’ +  Si) + (&a)* 

A2=--+& 

2 sinh r ( C L I - P d 2 + $  +- ( P I  - Pz)(SSo) + 
cosh2 cosh’ r 
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Having an explicit form for the mass operator, one can determine, in particular, 
which U I R  are contained in the decomposition of the tensor producof  representations 
corresponding to the principal series. The spectrum of operator At2 can be studied in 
the same manner as that for the non-relativistic Schrodinger operator. At r + O  we 
have that 

(5.9) 
as well as for a free Hamiltonian. Therefore,Ge situation known as the ‘fall onto the 
centre’ does not occur, and the operator At2 necessarily contains the continuous 
spectrum ranging from (0,a). Comparing (4.21) with (5 .8) ,  we conclude that the 
following theorem takes place. 

7lteorem 5.1. Let g +  U,(g) and g+  U 2 ( g )  be U I R  of the group SOo(l, 4) belonging 
to the principal series. Then the decomposition of their tensor product into U I R  

necessarily contains U I R  of the principal series with all possible spins s (either integer 
or half-integer depending on whether s1 + s2 is an integer or a half-integer) and all 

.Z = -a2 /ar2  + r ( & ) ’ /  r2 

p E (0, a). 

Theorem 5.1 can be proved in principle by a more straightforward way using Mackey’s 
theorem on a tensor product of induced representations (see, e.g., ch 18 of the book 
by Barut and Raczka (1977)). In the given case one should take the representation of 
the subgroup ASU(2): 

N T d )  = exp[i(p., -P2)71As, (~)OAs, (r)  (5.10) 

induce it in SOo( 1,4) and then decompose into UIR.  The latter task is not an easy one 
from the technical point of view. In any case, the knowledge of the explicit form of 
the mass operator gives information not only on decomposition of the tensor product 
into U I R  but also on other properties of a two-particle system (for example, relative 
motion of particles). 

As follows from theorem 5.1, for any system of free particles corresponding to the 
principal series of U I R  the spectrum of the mass operator contains all p E (0, a). This 
result has no analogy either in the Poincari-invariant or S0(2,3)-invariant theories 
where the mass can be defined as the lowest value of energy. Therefore, the spectrum 
of the mass operator of N particles with masses m l , .  . . , mN is bounded here from 
below by the value ( ml +. . . + m N ) .  

Let us give a simple example illustrating theorem 5.1. Let the spinless particles 1 
and 2 be in a rest state. Let MYb and MZb be the corresponding representation 
generators, and q1 and rp, be the corresponding normalised wavefunctions. Then (see 
proposition 4.4) M y q ,  = 0 at all i, j ,  and since rp, is the SO(4) scalar we have that 
(q l  , My’q , )  = 0 at all i. Analogous relations hold for the second particle. Therefore, 
an average value of the operator W 

(5.11) 

satisfies the equality ( W )  = ( q l  I W ,  I q,) + (q2 I W2 I q2). Hence, for an average value of 
p2 (see (4.21)) we have 

( P 2 )  = C L : + / I . : + :  (5.12) 

and if at the contraction to the Poincari group the particles remain massive (i.e. the 
values of p1 and p2 are sufficiently large) then the above value is evidently less than 

( w, = ( (Pl(P2I -i(MYb+ M Z b ) ( M l o b f M 2 a b )  I (PI(P2) 

(CL,+ P J 2 .  
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6. The de Sitter correction in a non-relativistic approximation 

In order to understand theorem 5.1 on a 'more physical level', let us consider again 
the generators (2.2). Let velocities of the particles be low ( U < <  1). Then we can easily 
calculate the correction of the order 1/R to the conventional operators P and E. We 
have 

im a a 3  p = p  +-J - 
R ap, 

where pj = mjuj, j = 1,2, and there is no sum over j .  We introduce for the two-particle 
system the well known quantities 

m2Pl- m,p2 
m ,  + m2 

P = P , + P *  4 =  

Then we can express the total momentum and energy in the form 

iM a P2 
PI + P* = P + - - 

R aP 
El+E2=M+-+- P - + -  

2 M  k ( ddp i) (6'3) 

where 

and m12 is a reduced mass of particles 1 and 2. Comparing (6.1) with (6.3) and (6.4), 
we see that a due account of the de Sitter correction results in an effective interaction 
in the mass operator. Since q is the non-relativistic relative momentum, a relative 
radius vector can be introduced through a conventional procedure assuming r = ia/dq. 
In such a coordinate representation the non-relativistic internal energy operator in 
spherical coordinates is 

where r = 1 r I. We see that an effective interaction between the particles is described 
by the interaction operator 

Let us determine the spectrum of operator (6.5). When doing so, it should be noted 
that at sufficiently long distances A / 2 m 1 2  is negligible compared with V .  Hence, solving 
the equation H N R $ = A $ ,  we see that at long distances the function $ depends on r 
in the following way: 

(6.7) $( ,.) - r - 3 / 2 + i A R  

Therefore, there exist solutions at any A from the interval (-00, 00),  and thus the 
spectrum of the operator H N R  occupies this interval. Moreover, since the functions 
(6.7) are not quadratically integrable, the whole spectrum is continuous. Analogously, 
one can easily show that for the system with an arbitrary number of particles the 
spectrum of operator H N R  also contains the whole interval (-m, 00). 



614 F M Lev 

The unboundedness of the ‘energy spectrum’ (the spectrum of operator MO4) from 
below is well known, being, probably, the basic feature distinguishing the 
SOo(l, 4)-invariant theory from the S 0 0 ( 2 ,  3)-invariant one. As we have shown above, 
the same holds also for the Hamiltonian of the ‘internal’ motion. 

In the case considered, introduction of interaction into a system can be accomplished 
in a conventional way, i.e. by adding together the interaction operator and HNR. If 
the interactions introduced are the conventional Coulomb or nuclear ones, then at 
long distances they are negligible when compared with (6.6). Therefore, the mass 
operator still has a purely continuous spectrum ranging from (-CO, CO), and there are 
no bound states in the theory. This condition by no means contradicts the experience, 
since the actual lifetime of a quasistationary state can be very long. 

The qualitative explanation of the above result is as follows. It is known that the 
de Sitter world possesses antigravity: the force of repulsion between particles is 
proportional to the distance between them. In the quantum case, this interaction is 
so strong that it results in a complete rearrangement of the spectrum of the non- 
perturbed mass operator. One may naturally suppose that the operator (6.6) is just a 
quantum operator corresponding to the universal classical repulsion. Indeed, the 
classical Hamilton function for radial motion, corresponding to the operator (6.5), is 

H ( p,  r )  = p 2 / 2 m  + p r /  R. 

Solving the canonical equations of motion, we have 

r ( t ) =  cI exp(r /R)+c,exp(- t /R)  (6.9) 

where cI and c2 are arbitrary constants. It follows from (6.9) that i: = r /  R 2 ,  as it should 
be. 

7. Conclusion 

The main results of this work are theorems 4.11 and 5.1. The former allows for 
interpretation of the momentum and boost operators in analogy with the PoincarC- 
invariant case. Until now, the different de Sitter analogue of the momentum operator 
has been dealt with, and it has been noted (see, e.g., Moylan 1983) that the physical 
meaning of the de Sitter boosts is still unclear. Note, however, that one cannot achieve 
a complete correspondence with the PoincarC-invariant case at any choice of the de 
Sitter analogues. For example, one cannot define the mass in the SO( 1,4)  case as the 
lowest value of energy. 

Theorem 4.11 has been proved only for the case of spin zero. Apart from the 
general properties of unitary representations of groups, only the commutation relations 
(1.3) (and Hughes’ method of S U ( 2 )  x S U ( 2 )  shift operators which follows from them) 
have been used. It can be assumed that an analogous decomposition exists also at 
S Z O  but the proof in this case is more complicated and requires utilisation of finer 
properties of representations of the group SOo( 1,4). 

The decomposition described in theorem 4.11 is in some aspects similar to the 
conventional decomposition of unitary representations into UIR. However, theorem 
4.1 1 describes the decomposition in more detail; in particular, it defines explicitly the 
unitary operator realising H as L,(J, CY, p )  0 Ho.  

The result of theorem 5.1 implies that even for the non-interacting particles with 
the ‘masses’ p I  and p2 the system mass operator contains all p from 0 to CO, and this 
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result would seem unexpected. This result has been explained in § 6 where the quantum 
operator corresponding to the de  Sitter antigravity has been obtained from the SO,( 1,4)  
invariance only (without any assumptions concerning the locality) while the constant 
of interaction 1 / R  arises only when an  interaction is interpreted in the PoincarC- 
invariant terms. In  our opinion, this example poses the following question: can all 
the existing interactions be interpreted as a result of transition from the high symmetry 
to the lower one? 
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